Formula:

$$
\text { Area }=\frac{1}{2} \int_{a}^{b} r^{2} d \theta \quad \text { Arc Length }=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Problem 1. Sketch the curve $r=3 \cos \theta$ and find the area that it encloses.
Solution 1. You can use the formula, but you may get the wrong answer (since this curve goes around twice from 0 to π. An easier solution is noting that this curve is the circle of radius $3 / 2$ centered at $3 / 2$, therefore has area $\pi 9 / 4$

Problem 2. Find the area of the region that lies inside the first curve and outside the second curve. $r=1-\sin \theta, r=1$.

Solution 2. First find the intersection points which is:

$$
\sin \theta=0
$$

therefore $\theta=0, \pi$. Then you need to think about what region you must integrate, either from 0 to π or π to 2π. The correct answer is π to 2π (I suggest plotting the graphs, then this should make sense), then the are will be:

$$
\frac{1}{2} \int_{\pi}^{2 \pi}(1-\sin \theta)^{2} d \theta-\frac{1}{2} \int_{\pi}^{2 \pi} d \theta=\frac{8+\pi}{4}
$$

Problem 3. Compute the length of the polar curve: $r=3 \sin \theta$ for $0 \leq \theta \leq \pi / 3$
Solution 3.

$$
\int_{0}^{\pi / 3} \sqrt{9 \sin \theta^{2}+9 \cos \theta^{2}} d \theta=\int_{0}^{\pi / 3} 3 d \theta=\pi
$$

Problem 4. Find the area of the region that lies inside the curve $r=\cos 2 \theta$ but outside the curve $r=$ $2+\sin \theta$

Solution 4. This problem is not possible to do without a calculator.
Problem 5. Compute the length of the curve: $r=3 \sin \theta, 0 \leq \theta<\pi / 3$
Solution 5. This is a repeat problem
Problem 6. Find the points on the curve where the tangent line is horizontal or vertical. $r=e^{\theta}$
Solution 6. We would like to compute $d y / d x$ with $y=r \sin \theta$ and $x=r \cos \theta$ and find the θ such that $d y / d \theta=0$ (horizontal points) and when $d x / d \theta=0$ (vertical points). Note that:

$$
\frac{d y}{d \theta}=r^{\prime} \sin \theta+r \cos \theta=e^{\theta}(\sin \theta+\cos \theta)
$$

This is zero for $\theta=3 \pi / 4$ and $7 \pi / 4$. And:

$$
\frac{d x}{d \theta}=e^{\theta}(\cos \theta-\sin \theta)
$$

which is zero for $\theta=\pi / 4$ and $5 \pi / 4$

